Atormac
Neurology India
Open access journal indexed with Index Medicus
  Users online: 2364  
 Home | Login 
About Editorial board Articles NSI Publications Search Instructions Online Submission Subscribe Videos Etcetera Contact
  Navigate Here 
 »   Next article
 »   Previous article
 »   Table of Contents

 Resource Links
 »   Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
 »   Citation Manager
 »   Access Statistics
 »   Reader Comments
 »   Email Alert *
 »   Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed101    
    Printed3    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2018  |  Volume : 66  |  Issue : 6  |  Page : 1667--1671

Application of diffusion tensor imaging in brain lesions: A comparative study of neoplastic and non-neoplastic brain lesions


1 Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Department of Neurosurgery, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
3 Department of Neurology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
4 Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

Correspondence Address:
Dr. Neetu Soni
Department of Radiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow - 226 014, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0028-3886.246270

Rights and Permissions

Purpose: To evaluate the role of diffusion tensor imaging (DTI) in the differentiation of neoplastic and non-neoplastic brain lesions, on the basis of DTI parameters, fractional anisotropy (FA) and mean diffusivity (MD) from the lesion (L) and the perilesional edema (PE). Material and Methods: Patients with newly diagnosed 25 neoplastic [10 high grade gliomas (HGG), 11 metastases, 4 low grade glioma (LGG)] and 25 non-neoplastic [13 tuberculomas and 12 neurocysticercosis (NCC)] brain lesions underwent an MRI, including the DTI sequences. Fractional anisotropy from the lesion (FAL) and mean diffusivity from the lesion (MDL), as well as fractional anisotropy from the perilesional edema (FAPE), and mean diffusivity from the perilesional edema (MDPE) were calculated and quantified using region of interest (ROI) based assessment on DTI derived FA and MD parametric maps. The mean values of FAL, FAPE, MDL and MDPE from the two groups were compared by the independent sample t-test. Results: In the non-neoplastic group, perilesional edema showed a significantly higher (P = 0.015) MD compared to the neoplastic group. Perilesional FA and lesional FA and MD showed no such statistically significant difference. On further subgroup analysis, MDPE was higher in metastases compared to HGG (P < 0.001), reflecting an increase in the vasogenic edema. Perilesional FA was higher in HGG compared to metastases and tuberculomas (P < 0.001) reflecting tumour infiltration in addition to vasogenic edema. FAL was higher in tuberculomas compared to metastases (P < 0.001), pointing to a more microstructural destruction in metastases. Conclusion: Quantitative DTI parameters, FA and MD, from the lesion and from the area of perilesional edema are helpful in the evaluation and differentiation of brain lesions.






[FULL TEXT] [PDF]*


        
Print this article     Email this article

Online since 20th March '04
Published by Wolters Kluwer - Medknow