Brivazens
Neurology India
menu-bar5 Open access journal indexed with Index Medicus
  Users online: 1439  
 Home | Login 
About Editorial board Articlesmenu-bullet NSI Publicationsmenu-bullet Search Instructions Online Submission Subscribe Videos Etcetera Contact
  Navigate Here 
 Search
 
  » Next article
  » Previous article 
  » Table of Contents
  
 Resource Links
  »  Similar in PUBMED
 »  Search Pubmed for
 »  Search in Google Scholar for
 »Related articles
  »  Article in PDF (475 KB)
  »  Citation Manager
  »  Access Statistics
  »  Reader Comments
  »  Email Alert *
  »  Add to My List *
* Registration required (free)  

 
  In this Article
 »  Abstract
 »  Introduction
 »  Case Report
 »  Discussion
 »  References
 »  Article Figures

 Article Access Statistics
    Viewed5620    
    Printed214    
    Emailed3    
    PDF Downloaded199    
    Comments [Add]    
    Cited by others 11    

Recommend this journal

 


 
CASE REPORT
Year : 2009  |  Volume : 57  |  Issue : 5  |  Page : 649-652

Marchiafava-Bignami disease: Role of neuroimaging in the diagnosis and management of acute disease


1 Department of Radiodiagnosis, Dr. Ram Manohar Lohia Hospital and PGIMER, India
2 Department of Radiodiagnosis, Lady Hardinge Medical College and Associated Smt. Sucheta Kriplani and Kalawati Hospitals, New Delhi - 110 001, India

Date of Acceptance15-Oct-2009
Date of Web Publication20-Nov-2009

Correspondence Address:
Shahina Bano
Room No. 204, Doctor's Hostel, Dr. Ram Manohar Lohia Hospital and PGIMER, New Delhi - 110 001
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0028-3886.57811

Rights and Permissions

 » Abstract 

Marchiafava-Bignami disease (MBD), a rare disorder most commonly seen in patients with a history of alcohol consumption, involves progressive demyelination and subsequent necrosis of the corpus callosum. Because clinical signs are nonspecific, the role of computed tomography and magnetic resonance imaging is essential to confirm the diagnosis. Early diagnosis with imaging and prompt treatment may improve the prognosis of MBD.


Keywords: Corpus callosum, choline/creatine ratio, Marchiafava-Bignami disease


How to cite this article:
Bano S, Mehra S, Yadav SN, Chaudhary V. Marchiafava-Bignami disease: Role of neuroimaging in the diagnosis and management of acute disease. Neurol India 2009;57:649-52

How to cite this URL:
Bano S, Mehra S, Yadav SN, Chaudhary V. Marchiafava-Bignami disease: Role of neuroimaging in the diagnosis and management of acute disease. Neurol India [serial online] 2009 [cited 2023 Jun 8];57:649-52. Available from: https://www.neurologyindia.com/text.asp?2009/57/5/649/57811



 » Introduction Top


Marchiafava-Bignami disease (MBD), characterized by primary degeneration of the corpus callosum, is a rare complication of chronic alcoholism. [1] Although nutritional deficiencies have been suspected, the cause is still unknown. The disease presentation may be acute, subacute or chronic. In the acute stage of the disease, the clinical features are highly variable and most of the cases reported have been diagnosed at autopsy. [2] However, advances in neuroimaging has enabled early diagnosis of MBD. We describe computed tomography (CT) and magnetic resonance imaging (MRI) findings and clinical course in a patient with MBD in the early stage.


 » Case Report Top


A 32-year-old male presented to our hospital with sudden onset tonic-clonic seizures. He had a history of chronic alcohol intake and his nutritional status was very poor. On the day of admission, he was in a confused and delirious state. Few days later neurological examination revealed recent memory difficulty, dysarthic speech, disconjugate eye movements, and gait abnormalities. However, clinical features suggestive of interhemispheric disconnection were not found. Tendon reflexes were brisk and plantars were upgoing bilaterally. Laboratory tests revealed, macrocytic anemia and mild liver dysfunction. Vitamin B 1 level was 20 ng/ml. Cerebrospinal fluid analysis showed normal cell count and biochemistry. Values for other blood tests were within normal limits. Electroencephalogram showed bilateral diffuse slow-wave activity.

Contrast computed tomography [Figure 1] demonstrated hypodense lesion in the middle layers of the corpus callosum involving genu, body and splenium. Fast spinecho T2-weighted [Figure 2] and fluid-attenuated inversion recovery [Figure 3] magnetic resonance images (MRI) revealed hyperintense lesions in the corpus callosum and these lesions were hypointense on T1-weighted images [Figure 4]a. The lesions were nonenhancing on postgadolinium images [Figure 4]b. Diffusion-weighted images [Figure 5]a revealed marked restriction with corresponding low apparent diffusion coefficient (ADC) values [Figure 5]b. On quantitative analysis, the lesion showed a low ADC value (10 -3mm 2 /s) on the ADC map 5 0.46 6 0.05 (mean ± SD). Swelling of genu and splenium was also evident. The remaining parts of the brain, including the mammillary bodies, medial thalamus, hypothalamus, massa intermedia and periaqueductal region of the midbrain appeared normal. There was mild diffuse brain atrophy.

Based on the clinical and imaging findings, the diagnosis of MBD was made. Patient was started on intravenous vitamin B complex and oral folate. He also received intravenous corticosteroids (250 mg methyl-prednisolone q6h) as the attending physician believed that the possible benefit of corticosteroids would outweigh the risk. Patient had marked clinical improvement, with complete recovery over the next three weeks. T2-weighted images [Figure 6] obtained 3 weeks after the treatment revealed complete resolution of imaging abnormalities.


 » Discussion Top


The first description of MBD was in 1903 by Marchiafava and Bignami. [1] The disease is most frequently seen in middle-aged or elderly alcoholic males. Rarely MBD has been reported in severely malnourished people, without history of alcoholism. It is characterized by degeneration, usually uniform, of the middle portion (middle lamina) of the myelinated fiber tracts of the corpus callosum. In some cases, the anterior and posterior commissures, the centrum semiovale and the other whitematter tracts (e.g., the long association fibers and the middle cerebral peduncles) may also be affected. Although chronic alcoholism and nutritional deficiencies have been suspected, the pathogenesis of the disease still remains controversial. [3]

Our patient had overlapping features of both Wernicke's encephalopathy and MBD. However, the vitamin B 1 level was normal and imaging did not show any characteristic features of Wernicke's encephalopathy. The radiological lesions involved the central portion of the corpus callosum, with sparing of the dorsal and ventral layer, producing the well-known "sandwich sign", the characteristic diagnostic sign of MBD. [4] The lesions were extensive, involving genu, body and splenium, with sparing of the rostrum. In our patient the corpus callosum lesions were hypodense on CT, hypointense on T1-weighted image and hyperintense on T2-weighted/fluid-attenuated inversion recovery (FLAIR) images. In addition there was accompaning swelling of genu and splenium. Lesions in MBD in acute or subacute phase are characterized by edema and early myelin damage. Fast spinecho T2-weighted hyperintensity of the lesion is due to both edema and myelin damage. The corpus callosum may remain hyperintense when the myelin damage is permanent and may recover to normal signal intensity with total remyelination. As lesions become chronic, cystic lesions are likely to develop. Cystic lesions are generally hyperintense on T2-weighted and hypointense on T1-weighted MR sequences. FLAIR images are even more sensitive to characterize chronic lesions. Hyperintense rim and hypointense core on FLAIR images represents gliotic rim with central necrosis, whereas uniformly hyperintense lesions indicates a combination of demyelination and edema. In acute phase the lesions are frequently larger than the lesions in the chronic phase and it is related to the associated edema. Neuropathological studies have also demonstrated edematous changes in the corpus callosum in the acute stage of MBD. [5],[6] Diffusion-weighted imaging also helps to identify demyelination, evident as areas of restricted diffusion. Unlike in stroke, however, in MBD, it is not uncommon for areas of restricted diffusion to resolve completely without apparent permanent damage. [7] In our patient there was complete resolution of the lesions on diffusion weighted imaging following treatment.

Other imaging modalities have been used to study the pathophysiology of MBD. MR spectroscopy (MRS) revealed an increase in choline-containing compounds, resulting in increase in the choline/creatine (Cho/Cr) ratio, during the acute phase of demyelination as a result of myeline breakdown and release of phosphocholine and glycerol phosphocholine. Lactate peak is usually present during the acute/subacute phase of demyelination. Normalization of the Cho/Cr ratio and lactate peak has been documented in patients following clinical improvement. [8] Single photon emission computed tomography (SPECT) scans have yielded interesting pathophysiologic data in patients with MBD. In a patient with MBD, SPECT studies showed bilateral reduction in cerebral blood flow. The patient had left hemispatial neglect in addition to left-handed apraxia and agraphia. [9] Another study has shown the importance of diffusion tensor imaging in demonstrating regional abnormalities in the corpus callosum that are not evident by conventional MRI. Fiber tracking demonstrates significant disruption of the axonal fiber bundles within the corpus callosum, most marked within the body, corresponding to the clinical finding of interhemispheric disconnection. [10]

No standardized treatment protocols have been established in MBD. However, most often patients are treated with thiamine, vitamin B-complex and folate, with good clinical recovery in many patients. Staszewski et al., treated a patient with thiamine, vitamin B-12 and folate and amantadine with improvement. [11] Clinical improvement has been documented using high dose of corticosteroids. [12] The available evidence suggests that an effective and aggressive early treatment is often associated with marked clinical improvement.

Other lesions involving the corpus callosum that may have similar imaging characteristics include postictal change, infarction, shearing injuries and demyelinating pathology. However, MBD can be distinguished from these disorders by the symmetry of the callosal lesions with relative sparing of the thin upper and lower edges. [13] Tumors in this location generally have a significant mass effect and contrast enhancement and are easily distinguished from MBD. Differentiating acute MBD from Wernicke encephalopathy is not difficult because, in the latter, MRI shows abnormal signal intensity and contrast enhancement in the mamillary bodies, periaqueductal region and the walls of the third ventricle. [14] Corpus callosal hyperintensity may also be seen in extrapontine myelinolysis (EPM), which may occur in isolation or in association with central pontine myelinolysis. The lesions in EPM are usually bilateral and symmetrical and may involve any of the subcortical structures. [15]

In summary, MBD is considered a radiological and medical emergency and early recognition is critical for good clinical outcome. The antimartum diagnosis of MBD mainly depends on the neuroimaging characteristics rather than the clinical features, which are often quite varied. Acute MBD may have a rapid course resulting in death. Early diagnosis and prompt institution of appropriate treatment are essential to improve the prognosis of acute MBD

 
 » References Top

1.Marchiafava E, Bignami A. Sopra un alterazione del corpo calloso osservata in soggetti alcoolisti. Riv Patol Nerv 1903;8:544-9.  Back to cited text no. 1      
2.Baron R, Heuser K, Marioth G. Marchiafava-Bignami disease with recovery diagnosed by CT and MRI: Demyelination affects several CNS structures. J Neurol 1989;236:364-6.   Back to cited text no. 2  [PUBMED]  [FULLTEXT]  
3.Berek K, Wagner M, Chemelli AP, Aichner F, Benke T. Hemispheric disconnection in Marchiafava-Bignami disease: c0 linical, neuropsychological and MRI findings. J Neurol Sci 1994;123:1-2.   Back to cited text no. 3      
4.Fortman BJ, Kuszyk BS. Incidentally diagnosed Marchiafava-Bignami disease. AJR Am J Roentgenol 1999;173:1713-4.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Ishizaki T, Chitanondh H, Laksanavicharn U. Marchiafava-Bignami's disease. Report of the first case in an Asian. Acta neuropathol (Berl) 1970;16:187-93.  Back to cited text no. 5      
6.Kosaka K, Aoki M, Kawasaki N, Adachi Y, Konuma I, Iizuka R. A non-alcoholic Japanese patient with Wernicke's encephalopathy and Marchiafava-Bignami disease. Clin Neuropathol 1984;3:231-6.  Back to cited text no. 6  [PUBMED]    
7.Hlaihel C, Gonnaud PM, Champin S, Rousset H, Tran-Minh VA, Cotton F. Diffusion-weighted magnetic resonance imaging in Marchiafava-Bignami disease: f0 ollow-up studies. Neuroradiology Jul 2005;47:520-4.   Back to cited text no. 7      
8.Rudkin TM, Arnold DL. Proton magnetic resonance spectroscopy for the diagnosis and management of cerebral disorders. Arch neurol 1999;56:919-26.  Back to cited text no. 8  [PUBMED]  [FULLTEXT]  
9.Ferracci F, Conte F, Gentile M, Candeago R, Foscolo L, Bendini M, et al. Marchiafava-Bignami disease: Computed tomographic scan, 99 mTc HMPAO-SPECT, and FLAIR MRI findings in a patient with subcortical aphasia, alexia, bilateral agraphia, and left-handed deficit of constructional ability. Arch Neurol 1999;56:107-10.   Back to cited text no. 9  [PUBMED]  [FULLTEXT]  
10.Sair HI, Mohamed FB, Patel S, Kanamalla US, Hershey B, Hakma Z, et al. Diffusion Tensor Imaging and Fiber-Tracking in Marchiafava-Bignami Disease. J Neuroimaging 2006l;16:281-5.   Back to cited text no. 10  [PUBMED]  [FULLTEXT]  
11.Staszewski J, Macek K, Stepien A. Reversible demyelinisation of corpus callosum in the course of Marchiafava-Bignami disease. Neurol Neurochir Pol 2006;40:156-61.   Back to cited text no. 11      
12.Kikkawa Y, Takaya Y, Niwa N. A case of Marchiafava-Bignami disease that responded to high-dose intravenous corticosteroid administration. Rinsho Shinkeigaku 2000;40:1122-5.   Back to cited text no. 12  [PUBMED]  [FULLTEXT]  
13.Friese SA, Bitzer M, Freudenstein D, Voigt K, Küker W. Classification of acquired lesions of the corpus callosum with MRI. Neuroradiology 2000;42:795 -802.  Back to cited text no. 13      
14.Bourekas EC, Varakis K, Bruns D, Christoforidis GA, Baujan M, Slone HW, et al. Lesions of the corpus callosum: MR imaging and differential considerations in adults and children. AJR Am J Roentgenol 2002;179:251-7.  Back to cited text no. 14      
15.Chua GC, Sitoh YY, Lim CC, Chua HC, Ng PY. MRI findings in osmotic myelinolysis. Clin Radiol 2002;57:800-6.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]  


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]

This article has been cited by
1 A case report on acute Marchiafava-Bignami disease
Sachin Gautam, Prachi Bagarhatta, RV Raghu, Sandeep Garg, Praveen Bharti, Rohit Gupta
Journal of Primary Care Specialties. 2023; 0(0): 0
[Pubmed] | [DOI]
2 Alkol Kullanimina Bagli Ensefalopati
Fatma Çelik Yabul, Alpay Alkan
Türk Radyoloji Seminerleri. 2023; 11(1): 81
[Pubmed] | [DOI]
3 A rare case of Marchiafava Bignami disease
VikramB Vikhe, KavishM Chopda, Junaid Ahmed, Sanjay Khaladkar
Medical Journal of Dr. D.Y. Patil Vidyapeeth. 2022; 0(0): 0
[Pubmed] | [DOI]
4 Neuropsychological impairments in a young-onset Marchiafava–Bignami disease with alcohol-dependence syndrome
Sravanthi Penubarthi, Raghunath Miryala, VishwakReddy Vatte, Srinivas Kandrakonda
Telangana Journal of Psychiatry. 2022; 8(2): 120
[Pubmed] | [DOI]
5 MRI Spectrum of Toxic Encephalopathy—An Institutional Experience
Shamick Biswas, HimaS Pendharkar, VivekS Murumkar
Neurology India. 2022; 70(4): 1525
[Pubmed] | [DOI]
6 A Pictorial Review on Reversible Splenial Lesions
Arpita Sahu, Kartik Mittal, Namita Kamath, Nandakumar PG, Amit Sahu
Indian Journal of Radiology and Imaging. 2021;
[Pubmed] | [DOI]
7 Clinical and radiological features of Marchiafava–Bignami disease
Xiaoyu Dong,Chaobo Bai,Jianfei Nao
Medicine. 2018; 97(5): e9626
[Pubmed] | [DOI]
8 Thiamine deficiency, oxidative metabolic pathways and ethanol-induced neurotoxicity: how poor nutrition contributes to the alcoholic syndrome, as Marchiafava–Bignami disease
L M P Fernandes,F R Bezerra,M C Monteiro,M L Silva,F R de Oliveira,R R Lima,E A Fontes-Júnior,C S F Maia
European Journal of Clinical Nutrition. 2017; 71(5): 580
[Pubmed] | [DOI]
9 Marchiafawa bignami disease possibly related to consumption of a locally brewed alcoholic beverage: Report of two cases
JagdeoP Rawat, Charles Pinto, KapilS Kulkarni, M. AnanthiK Muthusamy, MalayD Dave
Indian Journal of Psychiatry. 2014; 56(1): 76
[Pubmed] | [DOI]
10 Alcoholic ketoacidosis coincides with acute Marchiafava-Bignami disease
Ming-Hua Chen,Chun-An Cheng
The American Journal of Emergency Medicine. 2012; 30(9): 2087.e7
[Pubmed] | [DOI]
11 Imaging for diagnosis of Marchiafava-Bignami disease
Wiwanitkit, V.
Neurology India. 2009; 57(6): 837
[Pubmed]



 

Top
Print this article  Email this article
Previous article Next article
Online since 20th March '04
Published by Wolters Kluwer - Medknow