Neurology India
menu-bar5 Open access journal indexed with Index Medicus
  Users online: 12332  
 Home | Login 
About Editorial board Articlesmenu-bullet NSI Publicationsmenu-bullet Search Instructions Online Submission Subscribe Videos Etcetera Contact
  Navigate Here 
 Resource Links
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
    Article in PDF (821 KB)
    Citation Manager
    Access Statistics
    Reader Comments
    Email Alert *
    Add to My List *
* Registration required (free)  

  In this Article
   Article Figures

 Article Access Statistics
    PDF Downloaded28    
    Comments [Add]    
    Cited by others 1    

Recommend this journal


Table of Contents    
Year : 2018  |  Volume : 66  |  Issue : 6  |  Page : 1855-1857

Cerebral interstitial fluid impairment syndrome

Department of Neurosurgery, University Hospital of Brescia, Brescia, Italy

Date of Web Publication28-Nov-2018

Correspondence Address:
Dr. Pier Paolo Panciani
Department of Neurosurgery, University Hospital of Brescia, Brescia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0028-3886.246234

Rights and Permissions

How to cite this article:
Panciani PP, Migliorati K, Fontanella MM. Cerebral interstitial fluid impairment syndrome. Neurol India 2018;66:1855-7

How to cite this URL:
Panciani PP, Migliorati K, Fontanella MM. Cerebral interstitial fluid impairment syndrome. Neurol India [serial online] 2018 [cited 2022 Aug 8];66:1855-7. Available from: https://www.neurologyindia.com/text.asp?2018/66/6/1855/246234


Normal pressure hydrocephalus (NPH) was first described in 1965 as a syndrome of gait apraxia, dementia, and incontinence associated with normal cerebrospinal fluid (CSF) pressures and dilated ventricles.[1] Nowadays, the diagnosis and treatment are based on these criteria, although literature has shown variability of presentation and an imperfect responsiveness to lumboperitoneal shunt placement. Moreover, the classical hypothesis of CSF hydrodynamics has failed to support the generally accepted pathophysiology of NPH.[2] Therefore, the pathogenesis of the so-called NPH syndrome should be fully revised.

Many hypotheses have been advanced to explain the NPH pathogenesis. A unifying theory could be proposed according to the literature [Figure 1]. Loss of elasticity of the neuropil, extracellular matrix, and parenchyma naturally occurs in the aging brain. Therefore, the cerebral mantle progressively becomes more susceptible to abnormal CSF pressure spikes and this leads to both ischemic damage and an increase in the interstitial fluid pressure.[3]
Figure 1: The hypothesis regarding the genesis of cerebral interstitial fluid impairment. Ventriculomegaly is the result of an imbalance between the architectural forces within the stiffened brain parenchyma of the elderly subjects and the increased amplitude of the cerebrospinal fluid pulse waveform. This causes an imbalance between the hydrostatic and the oncotic forces that leads to ischemic damage and failure of drainage of vasoactive metabolites. We propose that the an interstitial fluid compartment impairment is the final stage of the process and that this may be be associated with the neurodegenerative process leading on to the final clinical spectrum of normal pressure hydrocephalus

Click here to view

The Starling resistor model, which simulates peripheral vascular resistance, consists of an elastic fluid-filled, collapsible-tube mounted inside a chamber filled with air. The static pressure inside the chamber resists the collapse of the tube by the pressure of the external air. Based on this Starling resistor model, this increase in the interstitial fluid pressure leads to a venous outflow impairment, and consequently, an inadequate vasoactive metabolites clearance.[4] The imbalance between the hydrostatic and oncotic forces leads to an interstitial fluid compartment impairment with progressive CSF increase.[5]

In this model, the ventricular enlargement follows the interstitial fluid increase and should be considered as only a late phenomenon of the disease.[6] As a matter of fact, there is a low rate of improvement of the clinical symptomatology in patients with NPH following their surgery. Moreover, whatever symptomatic benefits they accrue following the shunt procedure decrease within 3 years. Therefore, additional steps need to be undertaken to establish alternative neurological diagnoses in these shunted NPH patients in the long-term follow-up assessment.

We speculate that NPH is the final stage of a cerebral interstitial fluid impairment (CIFI) syndrome. Accordingly, intracranial pressure monitoring and cerebral compliance assessment should be done in the early stages of illness, even in subjects without radiological findings of ventricular enlargement, especially when they initially start showing slight gait disturbance and/or cognitive disorders and early signs of cerebrovascular impairment.

The cerebral interstitial fluid impairment (CIFI) syndrome requires a new diagnostic–therapeutic and follow-up approach. The venous outflow should be routinely investigated and treated early. In selected cases, ischemic injuries on MRI could reveal a CIFI syndrome and patients should be subjected to an infusion test. Careful follow-up is needed in patients with asymptomatic ventriculomegaly with features of idiopathic NPH on magnetic resonance imaging and also in patients with slight disturbances in gait, memory and bladder functions but without neuro-radiological abnormalities.

Future research should introduce new tools for a noninvasive detection of the cerebral compliance.[7] Moreover, novel therapeutic as well as pharmacological approaches are required to obviate the occurrence of irreversible disorders.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Mathew R, Pavithran S. Cognition in advanced normal pressure hydrocephalus: A pilot study from South India. Neurol India 2017;65:729-31.  Back to cited text no. 1
[PUBMED]  [Full text]  
Orešković D, Klarica M. Development of hydrocephalus and classical hypothesis of cerebrospinal fluid hydrodynamics: Facts and illusions. Prog Neurobiol 2011;94:238-58.  Back to cited text no. 2
Czosnyka M, Czosnyka ZH, Whitfield PC, Donovan T, Pickard JD. Age dependence of cerebrospinal pressure-volume compensation in patients with hydrocephalus. J Neurosurg 2001;94:482-6.  Back to cited text no. 3
Silverberg GD. Normal pressure hydrocephalus (NPH): Ischaemia, CSF stagnation or both. Brain 2004;127:947-8.  Back to cited text no. 4
Oresković D, Klarica M. The formation of cerebrospinal fluid: Nearly a hundred years of interpretations and misinterpretations. Brain Res Rev 2010;64:241-62.  Back to cited text no. 5
Espay AJ, Da Prat GA, Dwivedi AK, Rodriguez-Porcel F, Vaughan JE, Rosso M, et al. Deconstructing normal pressure hydrocephalus: Ventriculomegaly as early sign of neurodegeneration. Ann Neurol 2017;82:503-13.  Back to cited text no. 6
Cardim D, Schmidt B, Robba C, Donnelly J, Puppo C, Czosnyka M, et al. Transcranial doppler monitoring of intracranial pressure plateau waves. Neurocrit Care 2017;26:330-8.  Back to cited text no. 7


  [Figure 1]

This article has been cited by
1 Comparison of Programmable and Non-Programmable Shunts for Normal Pressure Hydrocephalus: A Meta-Analysis and Trial Sequential Analysis
Varidh Katiyar, Ravi Sharma, Vivek Tandon, Kanwaljeet Garg, Priya Narwal, PSarat Chandra, Ashish Suri, ShashankS Kale
Neurology India. 2021; 69(8): 413
[Pubmed] | [DOI]


Print this article  Email this article
Online since 20th March '04
Published by Wolters Kluwer - Medknow